Buyback Problem - Approximate Matroid Intersection with Cancellation Costs

نویسنده

  • Ashwinkumar Badanidiyuru
چکیده

In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of k matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and Approximation Algorithms for Weighted Matroid Intersection

In this paper, we propose new exact and approximation algorithms for the weighted matroid intersection problem. Our exact algorithm is faster than previous algorithms when the largest weight is relatively small. Our approximation algorithm delivers a (1 − ε)-approximate solution with a running time significantly faster than most known exact algorithms. The core of our algorithms is a decomposit...

متن کامل

Randomized Online Algorithms for the Buyback Problem

In the matroid buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to a matroid constraint on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost which is a fixed fraction of the bid value. We present a new randomized algorithm for this pr...

متن کامل

The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satis ability of boolean formulas in 3-conjunctive normal form as such an intersection. The corresponding approximation problems are shown NP -hard for certain approximation performance bounds. Moreover, some natural parameterized variants of the problem are shown...

متن کامل

Selling Banner Ads: Online Algorithms with Buyback

We initiate the study of online pricing problems in markets with “buyback,” i.e., markets in which prior allocation decisions can be revoked, but at a cost. In our model, a seller receives requests online and chooses which requests to accept, subject to constraints on the subsets of requests which may be accepted simultaneously. A request, once accepted, can be canceled at a cost which is a fix...

متن کامل

The Complexity of Maximum Matroid-Greedoid Intersection

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown NP -hard by expressing the satisfiability of boolean formulas in 3-conjunctive normal form as such an intersection. Also the corresponding approximation problem is shown NP -hard for certain approximation performance bounds. This is in contrast with the maximum matroid-matroid intersection ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011